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Background: Child abuse is highly prevalent and associatedwith increased risk for a range of health
problems, including cancer, cardiovascular disease, diabetes, psychiatric disorders, and other health
problems. Little is currently known about the mechanism by which early adversity confers risk for
health problems later in life.

Purpose: To determine if there are epigenetic differences associated with child maltreatment that
may help explain association between adverse childhood experiences and later health problems.

Methods: As part of a study examining genetic and environmental factors associated with depres-
sion, salivaDNAspecimenswere collected on 96maltreated children removed from their parents due
to abuse or neglect and 96 demographically matched control children between 2003 and 2010. In
2011, the Illumina 450K BeadChip was used on stored DNA specimens and analyzed to examine
whole-genome methylation differences between maltreated and control children.

Results: After controlling for multiple comparisons, maltreated and control children had signifı-
cantly different methylation values at 2868 CpG sites (p�5.0 � 10–7, all sites; average methylation
difference per site�17%; range�1%–62%). The gene set contained numerous markers of diseases
and biological processes related to the health problems associated with early childhood adversity.

Conclusions: Although replication is required, this study suggests that epigenetic mechanisms may be
associatedwith risk for healthproblems later in life inmaltreated children.This study lays the groundwork for
future studies examininghealth andmethylationmeasures to further characterize the role of epigeneticmech-
anisms in conferring risk formedical problems in individualswith histories of early adversity.
(AmJPrevMed2013;44(2):101–107)©2013American Journal of PreventiveMedicine

Introduction

Child abuse occurs at epidemic rates, with nearly
700,000 substantiated reports of child maltreat-
ment each year,1 many reported cases of actual

abuse referred to protective services that are not verifıed,2

and countless other cases that never come to the attention
of authorities.2–4 Child maltreatment and other adverse
childhood experiences are nonspecifıc risk factors for

multiple psychiatric disorders5–7 and several health risk
behaviors including smoking, overeating, and excessive
alcohol and drug use.8–10 Above and beyond the effect of
these risk behaviors, however, adverse childhood experi-
ences predict ischemic heart disease,9,11,12 stroke,9 respi-
ratory problems,13,14 diabetes,9,12 and cancer.9,15

How do experiences of early adversity confer risk for later
psychiatric and medical problems? Epigenetics has been pro-
posed as one possible mechanism.16–18 Epigenetics refers to
functionally relevantmodifıcations to the genome that do not
involve a change inDNAnucleotide sequence.19 Thesemodi-
fıcations regulate gene activity and play a role in acute regula-
tionof genes in response to changes in the environment.20,21

DNAmethylation is one of themost studied epigenetic
mechanisms.22 In mammalian cells, DNA methylation
occurs mainly at discrete CpG sites in the genome, re-
gions where cytosine nucleotides occur next to guanine
nucleotides.23,24 Although gene regulation is influenced
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by DNAmethylation in other regions of the genome, the
impact of methylation in promoters is best understood; it
can lead to gene silencing.

The effect of a history of childhood abuse on methyl-
ation has been examined previously in candidate gene
studies. In two reports, a history of childhood abuse was
associated with increased methylation in lymphoblast
DNA in the promoter region of the serotonin transporter
(SLC6A4), a gene implicated in several neuropsychiatric
disorders.25,26 A third report found childhood abuse as-
sociated with differences inmethylation at four CpG sites
in nonpromoter regions of SLC6A4, but these did not
withstand correction for multiple comparisons.27 Meth-
ylation in the glucocorticoid receptor (NR3C1), a gene
involved in the stress response and implicated in several
neuropsychiatric disorders, also has been examined, and
two independent research groups reported that a history
of childhood abuse was associated with altered methyl-
ation of NR3C1 in hippocampal-derived DNA.28,29

With the advent of methodologies to complete high-
throughput methylation profıling of the entire genome,30

novel epigenetic modifıcations associated with early adver-
sity also can be identifıed. Two small-scale studies used the
Illumina27KBeadChip,whichassays27,578CpGpromoter-
associated sites across the genome to examine methyl-
ation differences associated with early adversity. The fırst
study included 28 children: 14 reared from birth in insti-
tutions and 14 reared with their parents.31 The second
study included 100 adults: 25 who met criteria for post-
traumatic stress disorder (PTSD) secondary to childhood
abuse; 25 who met criteria for PTSD secondary to other
traumas; 25 adults with histories of childhood abuse
without PTSD; and 25 adults without PTSD and without
histories of childhood abuse.32 The fırst study reported
methylation differences between institution- and family-
reared children in numerous CpG sites in genes involved
in immune response and cellular signaling systems.31

These fındings were not replicated in the second study
with adults in which more-rigorous controls were used
for multiple comparison testing and contained adults
with PTSD secondary to other traumas in the non-abused
control group.32

The present investigation examines methylation pro-
fıle differences in a sample ofmaltreated and nontrauma-
tized comparison children using the new Illumina 450K
BeadChip, which examines a broader range of CpG sites
involved in gene regulation. In addition to examining
promoter-associated CpG sites, this array also assays
CpG sites involved in gene regulation located on the gene
body, 3=-untranslated regions (3=UTR), 5=UTRs, and in-
tergenic regions.30 The goal of the current study is to
identify novel pathways and mechanisms by which child

abuse and other adverse early experiencesmay confer risk
for a range of health problems later in life.

Methods
Participants included 192 children recruited between 2003 and
2010: of these, 96 were maltreated children removed from their
parents’ care due to reports of abuse and/or neglect within
6months of study enrollment, and 96were controlswith nohistory of
maltreatment or exposure to intrafamilial violence. All maltreated
children in this investigation also participated in a prior published
report of genetic and environmental factors associated with depres-
sion33; the cohort of controls was expanded for this current investiga-
tion.The192childrenwere from136 familieswithvariousnumbersof
siblings and half-siblings (range�1–4) in each family.
Children ranged in age from 5 years to 14 years, with amean age

of 10.2 years. The sample was approximately evenly divided by
gender (42%male) and was of mixed racial origin (17% European-
American, 38% Hispanic, 30% African-American, and 15% bira-
cial). Maltreated and control children did not differ in terms of age
(t�0.2, ns); gender (�2�0.1, ns); or race (�2�3.3, ns).

Inclusion Criteria

All children were (1) English-speaking; (2) of normal intelligence
(IQ�70); and (3) had no physical handicaps or medical problems
that would interfere with participation in the day camp program
where most of the assessments for the gene–environment study
were collected. Inclusion criteria for maltreated children addition-
ally required recent removal from parental care due to verifıed
report of abuse or neglect. Additional criteria for the control group
included (1) annual household income�$30,000; (2) no contact with
protective services and no history of abuse, neglect, or exposure to
domestic violence based on mothers’ and children’s report and veri-
fıed by the state protective services records; and (3) no lifetime history
of psychiatric illness verifıed using standard research assess-
ments.33–36 IRBs at Yale University and the Connecticut Department
of Children and Families approved the present investigation.

Maltreatment History

Multiple informants and data sources (e.g., parents, children, and
protective services case records) were used to obtain a best estimate of
a child’s maltreatment history.37 Before the maltreated children’s re-
moval from their parents’ care, the children in the present study had a
meanof three substantiated reportsof abuseorneglect (range: 1–7). In
addition, 92% experiencedmore than one type of maltreatment: 65%
were physically abused, 24% sexually abused, 83% neglected, 65%
emotionally abused, and 70%witnessed domestic violence.
Many experienced themost extreme forms of these categories of

maltreatment; 31% of physically abused children required medical
attention for injuries; 83% of sexually abused children experienced
genital fondling, oral–genital contact, or vaginal or anal inter-
course; 37% of children whowitnessed domestic violence observed
episodes in which a weapon was used or the parent received an
injury requiring medical care; and 16% of the emotionally abused
children were actually abandoned—either left unattended for sev-
eral days while a parent was on a drug binge or forsaken by a parent
in favor of a partner who sexually abused the child. Although the
sample is heterogeneous in terms of number and type of maltreat-
ment experiences, it is homogenous in terms of having a recent
experience ofmaltreatment of suffıcient severity to warrant out-of-
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home placement, and having a recent removal, a substantial stres-
sor common among all the maltreated children in the study.

DNA Specimens

Saliva was collected for DNA extraction, with specimens collected
from maltreated children at time of ongoing and extreme stress;
within6monthsafteran incidentofmaltreatmentof suffıcient severity
to warrant out-of-home placement; and during a time of multiple
ongoing stressors (e.g., frequent changes in placements, separation
from siblings, and irregular contact with birth parents). Specimens
were obtained at the research day camp where many of the assess-
ments for the depression studywere obtained.33,35,36,38 Tenmilliliters
of Scope mouthwash was dispensed into 50-mL tubes; children
swished for 45 seconds, then spit back into the tube. Specimens were
refrigerated within 2 hours of collection and DNA extracted using
Puregene kits.
To prepare specimens formethylation analyses, 500 ng of genomic

DNA was treated with bisulfıte reagents included in an EZ-96 DNA
methylation kit according to manufacturer’s protocol. Unmethylated
cytosines were converted to uracils; methylated cytosines remained
unchanged. Bisulfıte-converted DNA samples were then used in the
array-based DNA methylation assay. Methylation levels generated
using salivaryDNA show excellent test–retest reliability (r�0.99) and
high correlation with methylation levels obtained from blood DNA
(r�0.97; supplemental supportivedataare showninAppendixesA–E,
available online at www.ajpmonline.org).

Array-Based Genome-Wide DNA Methylation

Illumina 450K Methylation BeadChip analyses were completed in
2011 at Keck Biotechnology Laboratory at Yale using standard
procedures. This BeadChip interrogates �485,000 CpG sites per
sample at single-nucleotide resolution. It covers most designable
(96%) RefSeq genes, with 41% of CpG sites in promoter regions,
31% in the gene body, 3% UTRs, and 25% in intergenic regions.
GenomeStudio software was used to generate beta values for each
CpG site, with beta values ranging from 0.0–1.0 quantifying per-
centage methylation at each CpG site. GenomeStudio normalizes
data using various internal and background probe controls on the
HumanMethylation450 BeadChip. Standard quality-control tests
were run, and CpG sites that had detection p-values �0.001 were
removed to ensure only high-confıdence probes were included in
subsequent analysis (30/485,578 CpG sites removed, 0.006%).

Data Analysis

In order to take familial correlations into considerationwhilemod-
eling the effects of maltreatment status onmethylation values, data
were analyzed using a linear mixed-effects (LME) model, which
addresses familial correlations by assigning a random effect to each
family39 using the “nlme” command in theR software environment
(www.cran.r-project.org/web/packages/nlme//index.html). To normal-
ize residuals, an indicator variable to differentially specify random
effects for families with one child and those with more than one
child also was used. Demographic variables age, gender, and race
also were included in analyses as covariates.
There were noteworthy differences in the SDs of methylation

beta values for CpG sites, with low (�0.2); medium (0.2–0.8); and
high (�0.8) mean methylation values (Appendix A, available on-
line at www.ajpmonline.org). Given these differences and the het-
eroscedasticity of beta values, as recommended by Du and col-

leagues,40 M-values (logit transformation in log2 scale) were used
in all analyses. To correct for multiple comparison testing, the
signifıcance threshold for analyses was set to 5.0� 10–7, consistent
with the level recommended by Raykan and colleagues.41

Results
Group Differences in Methylation
After controlling for demographic factors (e.g., race, gender,
age), and multiple comparisons, maltreated and control chil-
dren had signifıcantly differentmethylation values at a total of
2868 CpGs sites of the 485K sites included on the array
(p�5.0 � 10–7, all sites). On average, methylation values of
maltreated and control children differed by 17% (range:
1%–62%). Signifıcant CpG sites were identifıed on all 23
chromosomes: 2113 (74%) at sites with low methylation
values (�0.2); 288 (10%) at sites with mid-range methyl-
ationvalues (0.2–0.8); and467(16%)at siteswithhigh-range
methylationvalues (�0.8).Aconsistentpatternemerged:mal-
treated children generally had elevated methylation values at
siteswith low-andmid-rangemethylationvalues, andreduced
methylation at sites with high-methylation values (chi-
square�310, p�0.0001; Figure 1).

Forty-fıve (2%) of the noted CpG sites were in 3=UTR
regions, and 213 (7%) in 5=UTR regions. In all, 848 were
promoter-associated (30%); 524 were in intergenic re-
gions (18%); and 1238 were on the gene body (43%).
Illumina IDs and summary data for each of the signifıcant
CpG sites are included in Appendix B (available online at
www.ajpmonline.org). As some of the CpG sites are asso-
ciated with more than one gene, and multiple CpG sites
were detected within some genes, an alphabetic listing of
associated genes and the number of signifıcant CpG sites
withineachgene isincludedinAppendixC(availableonlineat
www.ajpmonline.org). Although the majority of genes (88%)
had signifıcant methylation differences in only one CpG site,
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Figure 1. Pattern of methylation differences at low, me-
dium, and high-methylated CpG sites
Note: Maltreated children had elevated methylation values on the low-
methylated (n�2113) and medium-methylated (n�288) sites, and reduced meth-
ylation at the high-methylated (n�467) sites (�2�310, p�0.0001).
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256 genes had signifıcant
methylation differences
in two CpG sites, and 27
genes had signifıcant
methylation differences
in three CpG sites. Eight
genes had signifıcant
methylation differences
in four or more CpG
sites:CCDC85C, FANK1,
FRG1,TMED2,WNT3A,
PTPRN, SLC29A4, and
PTPRN2.

Replication of
Prior Candidate
Gene Findings
As the Illumina 450K
Beadchip does not in-
clude CpG sites in the
promoter regions of
SLC6A4 or NR3C1, di-
rect comparisons with
prior published candi-
date gene studies are
not feasible. Methyl-
ation at one CpG site
on the body of the NR3C1 gene (cg04111177), how-
ever, was signifıcantly lower in maltreated children
after controlling for demographic factors and multiple
comparisons (p�2.19 � 10–7).

Disease Biomarker–Gene Associations
To identify affıliated diseases, the complete list of genes
associated with signifıcant CpG sites was analyzed using
GeneGo Metcore® software. The MetCore software tests
for signifıcance of markers using a variation of Fisher’s
exact test with Benjamini-Hochberg false discovery rate
(FDR) corrections. A substantial number of genes associ-
ated with lung, colorectal, prostatic, breast, colon, and
ovarian neoplasms were contained in the gene set show-
ing differential methylation among maltreated and com-
parison children (Table 1).

Biological Pathways–Gene Associations
The GeneGoMetcore® software also was used to identify
biological pathways and processes affıliated with the set
of genes showing differing patterns of methylation in
maltreated and control children. Genes associated with a
wide array of biological processes relevant to many of the
diseases associated with early adversity were identifıed
(Appendix E, available online at www.ajpmonline.org).

Discussion
Child maltreatment was associated with widespread dif-
ferences in methylation across the entire genome. After
rigorously controlling for demographic factors and mul-
tiple comparisons, group differences in methylation val-
ues emerged at a total of 2868 CpGs sites of the 485K sites
included on the array. A general pattern emerged, such
that maltreated children had elevated methylation values
at CpG sites with methylation values in the low to mid
range, and reduced methylation values at CpG sites with
methylation values in the high range.

Approximately 20% of signifıcant sites were in inter-
genic regions.ManyCpG islands in intergenic regions are
enriched for factor-binding sites and are involved in the
three-dimensional organization of the genome and gene
regulation.42,43 Transcription factor–binding sites and
chromatin insulators within intergenic regions are be-
lieved to mediate intra- and inter-chromosomal interac-
tions, affecting gene expression at both proximal and
distal locations. There are numerous instances where in-
tergenic genetic variation is associatedwith disease risk,44

and methylation in intergenic regions has been impli-
cated in neuropsychiatric diseases,45 cardiovascular dis-
ease and obesity,46 and a variety of cancers.47–51 As less
than 2% of the more than three billion DNA base pairs in
human genome code for proteins, it is not surprising that

Table 1. Disease biomarkers significantly associated with genes that are differentially
methylated in maltreated and control children

Disease biomarkers p-value A B

Lung neoplasms: cell cycle 7.114E–04 16 43

Colorectal neoplasms: regulation of progression through cell cycle 4.523E–03 20 68

Breast neoplasms: GPCR pathway regulation 4.642E–03 23 82

Prostatic neoplasms: regulation of progression through cell cycle 6.484E–03 20 70

Prostatic neoplasms: anti-apoptosis 7.111E–03 12 35

Breast neoplasms: cell–cell signaling 8.090E–03 26 100

Breast neoplasms: endothelins 8.946E–03 17 58

Prostatic neoplasms: transcription 1.069E–02 27 107

Breast neoplasms: cell motility 1.097E–02 15 50

Breast neoplasms: gene transcription 1.097E–02 15 50

Colonic neoplasms: cell cycle 1.514E–02 17 61

Lung neoplasms: regulation of progression through cell cycle 1.570E–02 11 34

Ovarian neoplasms (core network 1) 1.941E–02 28 117

Breast neoplasms: CREB1 2.132E–02 14 49

Breast neoplasms: transcription regulation 2.364E–02 34 150

Note: Column A includes the number of genes in the disease biomarker set, and Column B represents the
number of genes within the set that had methylation differences in the maltreated and control children.
GPCR, G-protein coupled receptor
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a role in gene regulation and disease risk is emerging for
intergenic regions of DNA.

The majority of signifıcant CpG sites, however, were
within intragenic regions, with many of the genes with
the greatest number of CpG sites associated with diseases
previously linked to early childhood adversity.11,13,15,52

Of the genes with the greatest number of signifıcant CpG
sites, CCDC85C is involved in cortical development53;
PTPRN2 is associated with risk for depression and sub-
stance dependence,54 as well as insulin-dependent diabetes
mellitus55; FANK1 is linked to asthma55; andWNT3A is
implicated in cancer.56

A substantial number of genes implicated in lung,
colorectal, prostatic, breast, colon, and ovarian neo-
plasms were contained in the set of genes showing differ-
ential methylation among maltreated and comparison
children (Table 1). In multiple studies, experiences of
childhood adversities in general9,15,57—and child abuse
in particular57,58—have been associated with increased
risk for lung, prostate, breast, and other cancers. The
increased risk for cancer associated with adverse early
experiences may be due to the health risk behaviors, such
as smoking, obesity, and excessive alcohol consumption,
that are associated with early adversity,58 and as the pres-
ent study suggests, it also may be due to epigenetic
changes in key genes implicated in cancer.

The gene set showing differential methylation between
the maltreated and comparison children also contained
genes involved in biological processes relevant in psychi-
atric and substance use disorders (e.g., neurogenesis, ax-
onal guidance); heart disease (e.g., cardiac development);
stroke (development of blood vessel morphogenesis); re-
spiratory disease (e.g., interleukin regulation); diabetes
(e.g., leptin signaling); and cancer (e.g., WNT signaling,
NOTCH signaling; Appendix A, available online at
www.ajpmonline.org). Multiple networks involved in in-
flammation (e.g., IL-2 signaling) and gene regulation
(e.g., translation initiation, regulation of telomere length)
also were identifıed.

Although there is controversy in the fıeld about the use
of peripheral DNA methylation markers to study tissue-
specifıc disease processes, there are emerging research
fındings across multiple areas of medicine documenting
the utility of peripheralDNAmethylationmeasures.59–63

A recent review of studies that examined breast cancer
methylation markers in plasma and serum concluded
that these peripheral methylationmarkers are potentially
a very attractive additive method for early tumor detec-
tion.57 Methylation profıling of DNA specimens derived
from saliva specimens also have identifıed epigenetic dif-
ferences between diabetic patients with end-stage renal
disease and diabetics without nephrology56; and methyl-
ation patterns in DNA derived from postmortem brain

tissue, white blood cells, and germ lines were found to be
different in bipolar patients and controls, with white
blood cell and sperm DNA methylation levels mirroring
most of the brain fındings.59 Although additional re-
search is required to better understand the extent and
circumstances for similarities and differences in DNA
methylation across tissue types, there is a growing body of
research suggesting a role for peripheral DNA methyl-
ation measures in understanding disease pathology and
deriving biomarker sets to predict risk, diagnosis, and
prognosis.

The role of epigeneticmechanisms in disease is an evolv-
ingareaofmedicine.Much isunknownabout theepigenetic
regulation of genes involved in normal development and
variousdiseaseprocesses.Epigenetic changes in somegenes,
suchas those involved inestablishingoculardominanceand
visual acuity, are responsive to environmental manipula-
tions only during certain sensitive periods. Within a nar-
row window of development, experiences of monocular
deprivation can lead to long-term changes in brain devel-
opment and visual processing that are mediated through
epigenetic mechanisms. These changes were previously
thought to be permanent, but recent research has shown
that they can be reversed with pharmacologic interven-
tions and experiences of environmental enrichment
later in development, allowing complete function to be
restored.64

Limitations
The current study provides preliminary support for the
notion that epigenetic mechanisms may be involved in
conferring risk for a host of health problems later in life
among individuals with a history of child maltreatment.
The study is limited by itsmodest sample size, the absence
of cross-sectional and longitudinal health data, and fail-
ure to obtain gene expression data. This study lays the
groundwork, however, for future studies to further ex-
plore the role of epigeneticmechanisms in conferring risk
for health problems in individuals with histories of early
adversity.

Nonreplication of genetics fındings has been a problem
acrossmultiple areas ofmedicine.65,66 Future larger-scale
studies can employ split-half designs and pyrosequencing
to validate methylation fındings. In addition, emerging
fındings suggest the need to examine possible confounds
such as lead exposure,67 aswell as genetic polymorphisms
that may moderate methylation effects.68

Conclusion
Child abuse is a preventable risk factor associated with a
range of health problems,69 and a history of child abuse is
often associated with poor treatment outcome.70–72 Fur-
ther research in this area will help to identify novel pre-
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vention and intervention strategies to reduce the burden
associated with stress-related health problems. Epige-
netic changes are often long-lasting, but they need not be
permanent.64
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